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Abstract: In recent years there has been considerable interest in predicting the barriers to electron-transfer, proton-transfer, 
atom-transfer, and group-transfer (e.g., SN2) reactions. In a previous paper, a simple equation was obtained that accurately 
predicts barrier heights for transition states and well depths for stable intermediates and is in agreement with a fair body of 
experimental data and ab initio potential energy surfaces. This equation has been obtained by using relationships describing 
the response of the electronic kinetic energy to perturbations and is not limited to any particular class of transfer reaction. 
In the present paper, it is shown that previous empirical equations (e.g., Marcus' equation, BEBO equation, LEPS equation, 
Rehm-Weller equation, Lewis' equation, Agmon-Levine equation, Bell's electrostatic model of proton transfer, Ie Noble's 
equation, Kurz's equation, etc.), obtained by a wide variety of apparently unrelated assumptions, are special cases of this more 
general result. 

Introduction: Predicting Barriers and Well Depths for 
Group-Transfer Reactions 

In the past few years there has been considerable interest in 
theoretical approaches to predicting barriers to reactions involving 
proton transfer or nucleophilic substitution. The Marcus equation,1 

originally derived for electron-transfer reactions, has been found 
to "work" surprisingly well for proton transfer and SN2 reactions 
in the gas phase2 and in solution.3 In a previous paper,4 it was 
shown that the Marcus equation also gives an accurate prediction 
(to within 1 kcal or so) of barrier heights calculated by SCF 
methods (Hartree-Fock or Hartree-Fock plus CI), and this 
finding led to an equation that has proved useful for estimating 
barriers4 and well depths4,5 for group-transfer reactions such as 
nucleophilic substitution4-6 and proton transfer.4'5 This equation 
describes the barrier (or well depth), AEAC*, f°r a n unsymmetrical 
reaction 

A - B + C ^ A + B-C (1) 

in terms of the barriers or well depths (A£AA*, AECc*) for the 
corresponding identity reactions: 

A-B + A — A + B-A (2) 

C-B + C — C + B-C (3) 

and the overall energy change, AE,4 for reaction 1. A£AC* is given 
by 

A£AC* = A£0*(l - g2) + V2AE(I + gl) (4) 

The functions ^1 and g2 are odd and even functions4,5 of AE (or 
other specific parameters4) and govern the relative contributions 
of the kinetic term, AE0*{\ - g2), and the thermodynamic term, 
l/2AE(\ + g{), to the overall barrier or well depth.4,5 The intrinsic 
barrier,1,18,19 AE0*, is generally approximated as the average of 
the two identity barriers (i.e., AE0* = ]/2[AEAA + A£cc])> al­
though exceptions may exist. For reactions near thermoneutrality 
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gi and g2 are close to zero, giving 

A£AC* = AE0* + Y2AE (5) 

while for extremely exothermic reactions (large negative AE), g2 

—- 1 and ^1 —*• - 1 , yielding4,5 

A£AC* = 0 (6) 

In the case of highly endothermic reactions (large positive AE), 
ft-" 1. £i —' 1. and 

A£AC* = AE (7) 

Such behavior conforms to that expected from Hammond's 
postulate7 and other qualitative proposals set down by Hughes, 
Ingold, and Shapiro,8 Bell, Evans, and Polanyi,9 Bronsted,10 

Leffler,11 Thornton,12 More O'Ferrall,13 Ie Noble,14 Mok and 
Polanyi,15 and others. The purpose of the present paper is to point 
out that the quantitative barrier expressions given by London-
Eyring-Polanyi-Sato (LEPS),16 Johnston and Parr,17 Marcus,1,18 

Murdoch,19 Rehm and Weller,20 Agmon and Levine,21 Bell,22 Ie 
Noble,14 Lewis,23 Kurz,24 Thornton,12 Zavitsas,25 and Ahrland-
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Figure 1. Behavior of F1 for six empirical barrier functions. The F1 
corresponding to the Marcus equation is given by the heavy line, and the 
gi's corresponding to Ie Noble's equation, the BEBO equation, the 
Rehm-Weller equation, and the Marcus-BEBO equation are identified 
by the upper right hand legend in the order corresponding to the re­
spective values of F1 at AEfAE0*

 = 4.5. The F1 corresponding to Bell's 
electrostatic model of proton transfer is the sigmoid function, which 
terminates at |A£/AE0*| = 4 and is labeled "Bell". See Tables I and II. 

Chatt-Davies-Williams26 reduce to specific cases of eq 4 or to 
simple extensions.27,28 This result is of some significance, since 
all of these equations have enjoyed a high degree of empirical 
success and have not only been derived on the basis of widely 
divergent assumptions but frequently give excellent empirical 
correlations even when the underlying assumptions seem inap­
plicable. The previous derivation of eq 44 is based on some simple 
properties of the kinetic energy29 and is independent of the type 
of transfer reaction, the number of electrons involved in bonding,30 

and the size of transferred fragment. Consequently, it would be 
worthwhile to explore the relationship linking eq 4 to other em­
pirical equations for electron-, proton-, atom-, or group-transfer 
reactions. 

A Common Denominator 
Eleven of the empirical equations can be shown to be special 

cases of eq 4, each of which corresponds to a different choice of 
gl and g2 (Table I). For nearly thermoneutral reactions, all reduce 
to the first two terms of the Marcus equation (i.e., eq 5), which 
has been shown to be equivalent to an energy additivity relationship 
between the transition states for reactions 1, 2, and 3.5,31 It has 
also been shown that the breakdown from energy additivity can 
be approximated by proper choice of ̂ 1 and g2.

4-5 In Figures 1 
and 2, a comparison is made of the various choices for ̂ 1 and g2, 
and the resulting barriers (A£AC*) for reaction 1 are given in Table 
II. All equations give similar results for the range of A£,/(4A£0*) 
corresponding to many experimental reactions (\AE/(4AE0*)\ < 
1) .32 The five essential ideas that follow from eq 4 are as follows: 

( I ) A change in fragment (A, B, or C) for reaction 1 can be 
expected to alter both the kinetic term and the thermodynamic 
term. When changes in the kinetic term dominate and oppose 
changes in the thermodynamic term, the BEP principle9 is expected 
to fail and a less stable product may be formed faster than a more 
stable product. 

(2) When changes in the thermodynamic term and kinetic term 
are in the same direction or when changes in the thermodynamic 
term dominate, the BEP principle9 is expected to hold and the 
more stable product should be formed faster. 

(26) S. Ahrland, J. Chatt, N. R. Davies, and A. A. Williams, J. Chem. 
Soc, 276 (1958). 

(27) See eq 8. 
(28) See footnote 55 in ref 4. 
(29) J. R. Murdoch, J. Am. Chem. Soc, 104, 588 (1982). 
(30) Group-transfer reactions usually involve cleavage of one bond and 

formation of another. In SN2 or proton-transfer reactions, four electrons are 
formally associated with these two bonds, while three electrons are associated 
with the two bonds in atom transfer. Hydride transfer to a cation involves 
two electrons in a formal sense. 

(31) (a) J. R. Murdoch, J. A. Bryson, D. F. McMillen, and J. I. Brauman, 
/ . Am. Chem. Soc, 104, 600 (1982). (b) J. R. Murdoch, ibid., 94, 4410 
(1972). (c) M. A. Ratner and R. D. Levine, ibid., 102, 4898 (1980). 

(32) For a reaction with AE0' = 10 kcal/mol, this range for AE would 
extend out to around ±40 kcal/mol. 
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Figure 2. Behavior of F2 f°
r s 'x empirical barrier functions. The F2 

corresponding to the Marcus equation is given by the heavy line and the 
others (see figure legend for Figure 1) are indicated by the appropriate 
label. The even function, F2, for the Rehm-Weller and Marcus-BEBO 
equations is arbitrary, and the term to the left of the plus sign of F1 (see 
Table I) has been squared and set equal to F2 for these two cases. 

(3) As a thermoneutral reaction becomes more endothermic, 
the contribution of the kinetic term tends to decrease^ and the 
contribution of the thermodynamic term increases. A switchover 
from kinetic control to thermodynamic control may occur as the 
reaction becomes more endothermic and A£AC* approaches AE. 

(4) As a thermoneutral reaction becomes more exothermic, the 
contributions of both thermodynamic and kinetic terms decrease, 
and A-EAc* m aY approach 0.4,s When lim g2/g\ = 0 (as r —*• 0; 
see Table I for examples), the thermodynamic term tends to 
decrease more quickly than the kinetic term, which may result 
in a switchover from thermodynamic to kinetic control as the 
reaction becomes more exothermic. 

(5) The kinetic term [i.e., AE0*(\ - g2)] determines the relative 
barrier height for two reactions of comparable thermodynamics. 

Extensions of Eq 4: Intrinsic Asymmetries 
Two Sets of Interpolating Functions. The functions gx and g2 

can be interpreted4 as interpolating functions that transform the 
limiting case of additivity (eq 5) to the limit of eq 6 (A£AC* = 
0) or eq 7 (A_EAC* = AE). It is also possible to use two sets of 
odd and even interpolating functions (e.g., ^1

 A, g,c, g2
A, £2C)>so 

that a modified form of eq 4 results:4 

AE* = AE0* + VA(Y2 - / A ° ) S 2 A + VC(VI -fc°)g2C + 
Y2[AE + V ^ - Vcgf] (8) 

For proton-transfer reactions, VA and Vc represent negative proton 
affinities,4 and/A° and/ c ° are related to the magnitude of the 
respective barriers for the identity reactions.1'33 

BEBO: Different Exponents. In the previous sections, the same 
exponent for the two bond order terms was used to describe a 
simplified BEBO model (Table I). If different exponents are used, 
then the BEBO equation 

AE* = VA - KA(1 - n*Y* - Vc(n*)K (9) 

can be transformed34 to 

AE* = A£0* + l/2AE +Vc\ - E 
1 i - l 

[ _ - (Pc-i m 1 
[h (0! J 

(=i 

(PA 

f -(PK-D1Q,]. . , \ t A 

0T-J"Fc[(" /2) + S^0T-J (10) 

(33) The parameter /A° relates FA to the identity barrier through the 
equation, AE^* - (2/A° - 1)KA. See eq 16, ref 4. Note that analogous 
quantities can be used for KA in other types of group-transfer reactions: 
electron affinity (electron transfer); bond dissociation energy (atom transfer); 
methyl cation affinity (SN2 at methyl); hydride affinity (hydride transfer); 
etc. 



Table I. Evaluation ofg, and g2 for Empirical Barrier Functions 

equation (h) 

I la. Marcus1 

Jib. Murdoch" 
I 2. Thornton's inverted 
I parabola12 

/ 3. Rehm-Weller20 

' 4. Lewis23 

I 5. Ahrland-Chatt-
' Davies-Williams26 

j6.Marcus-BEB018 

' 7. Agmon-Levine21 

8. Bell's electrostatic 
model22 

9. BEBO (simplified)1 

10. Ie Noble14 

l l .Kurz 2 

AE* = AE0* + */2AE + AE2/16AE0* 

AE*= 1I2AE + [(Af0+)2 + (1AAf)2]1 '1 

AE * 
AE* = AE0* + '/2AE + ~ In (cosh r) 

AE* = 
(n*~Py 

Lp(I -p)(l-2n* + 2n*2) 

n*='h +T 
L = distance between centers of two 

spheres with radius pL and total 
charge of f 2 2 

AE*=VA- VA(l - n*Y> - Vc(n*r 

n* = 1/2 +r 

AE* = l6AE0*n" - 2(AE + UAE0*)n3 + 

3(Af+ yAf0*j/!2 

K = 1I7 +T 

AE* = ->/2[l + 2 ( / J + - 1 A ) ] A f + 

AE0*[l + Xbm(n*-'/2y
m 

n* is a root to the polynomial 
O = Af + AE0

 + X2mbtn(n-1l2y
mi 

(I + T2)1'2 - 1 g2(r) 

In cosh T ^2(T)(In 2) 
+ • -

T T 

rid - 2p) 

even" 

4r2 

1 + 4 r 2 

2r + S —p- 2 
i=l 0)! 

(see footnote (') 

or 

n*p-(l-n*r 

3 T - 4 T 3 

2 ( / I + - 1 A ) 

-2s (p-D'e,-
<=1 (0!50 

(see footnote /) 

or 

1 

1 - 2( ' /2)p 

8r2 - 16r4 

[n*P + (l-n*y>- 2(1A)P] 

S 6 m ( n * - ' A ) s m 

m>l 

AE/4 AE0* 

AE/2AE0* 

AE\n2 

2AE * 

«*-'/« 
I-AE' _ 1 

1 - A£" + (1 - Af ' 2) 1 ' 2 2 
AE' =-1I2 AE(I-2p)lAE0* 

( K A / K C ) ' / < P - ' ) Î  

! + ( K A / K C ) 1 ^ - ' ) 2 

3Af 

32AE- * 

I + - V , 

(b) 

(c) 

(d) 

(e) 

(f) 

(?) 

a Even function is arbitrary. b \AE/AE0*\ < 4. c lAf/Af 0
+l « •». d IAf/Af0*! < ~. e IAf/Af 0

+l < 2/(1 - 2p);p = >/4. ' IAf/ Af 0
+l < 2/(1 - 2(1I2Y

1); Af 0
+ = 1I2(Vp, + V0)(I - 2(1I2)"). 

g IAEYAf0
+I < 32/6. h See ref 4 and 5 for discussion of limiting behavior of IAf/Af 0*l. • Rt is the sum of odd terms in the expansion of n In' n\ Qi is the sum of even terms in the expansion of n In' n 

(excepting the zero-order term);,S0 = D,(p - 1)' 1I2KiY-. 
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Table II.° Comparison of AE*/AE0* Vs. AEjAE0* 

Murdoch 

AElAE0* 

-4.0 
-3.5 
-3.0 
-2.5 
-2.0 
-1.5 
-1.0 
-0.5 

0.0 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 

AE* IAE0* 
(Marcus) 

0.0000 
0.0156 
0.0625 
0.1406 
0.2500 
0.3906 
0.5625 
0.7656 
1.0000 
1.2656 
1.5625 
1.8906 
2.2500 
2.6406 
3.0625 
3.5156 
4.0000 

AE*/AE0* 
(Rehm-Weller) 

0.2361 
0.2656 
0.3028 
0.3508 
0.4142 
0.5000 
0.6180 
0.7808 
1.0000 
1.2808 
1.6180 
2.0000 
2.4142 
2.8508 
3.3028 
3.7656 
4.2361 

AE* IAE0* 
(Marcus-BEBO) 

0.0875 
0.1222 
0.1699 
0.2348 
0.3219 
0.4368 
0.5850 
0.7716 
1.0000 
1.2716 
1.5850 
1.9368 
2.3219 
2.7348 
3.1699 
3.6221 
4.0875 

AE*/AE0*
b 

(BeU) 

0.0238 
0.0078 
0.0791 
0.2010 
0.3595 
0.5476 
0.7618 
1.0000 
1.2618 
1.5476 
1.8595 
2.2010 
2.5791 
3.0078 
3.5238 

AE*/AE0*
 c 

(BEBO) 

0.0777 
0.1125 
0.1609 
0.2271 
0.3160 
0.4329 
0.5830 
0.7710 
1.0000 
1.2710 
1.5830 
1.9329 
2.3160 
2.7271 
3.1609 
3.6125 
4.0777 

AE* IAE0* 
(Ie Noble) 

0.0195 
0.0495 
0.0994 
0.1734 
0.2747 
0.4061 
0.5699 
0.7676 
1.0000 
1.2676 
1.5699 
1.9061 
2.2747 
2.6734 
3.0994 
3.5495 
4.0195 

1 Values of AE*/AE0* for additional empirical functions are given in ref 4 and 5. b p = ' /„. -' p = 1.2, VA = 100 kcal/mol, Vc = VA- AE. 

The nonadditive contribution to AE* (see Table I for definitions 
of Qh R1) consists of a weighted sum of VA and Vc (kinetic term) 
and a weighted difference of VA and Vc (thermodynamic term). 
The chief distinction between eq 8 and eq 4 is that AE* will 
approach the limiting cases (eq 6 and 7) somewhat differently, 
since VA and V0 are modified by different interpolating functions. 
Marcus has referred to this behavior as an intrinsic asymmetry,18 

while Koepple and Kresge35 have given specific examples. 
BEBO: Different Exponents Plus Repulsion Term. The re­

pulsion term in BEBO is given17 by 

*AC = Dt[%e-^in,n2)^}[\ + fce^n,/^] (11) 

The terms Dc, /30, Ar8, /S1 refer to various properties of the A-C 
bond in the transition state corresponding to reaction 1 and are 
defined explicitly in the paper by Johnston and Parr.17,36 

Equation 11 can be simplified to37 

*AC = DACCAC[lA - «2]ft + 0ACCAC2I1A - < 2 F ' (12) 

where DAC = Dvt = n* - l/2, and CAC = l/2e~^Ar: The expansion 
°f [1A ~ ' 2 F 1 around e = 0 will contain only even terms in e and 
will affect only the kinetic contribution to the barrier. 

If the parameters in eq 12 are chosen to give the limiting case 
of eq 5, then38 

f(l -n*)n* Y\ 1"(I-»»)»• "N 
*AC = (0AA + Z>cc) - T 2 T \ \ l + \ - V 2 V 

[ "01 "02 J L L «01 «02 J J 
(13) 

(34) This transformation is based on a Taylor series expansion of rf to give: 
if = n + nlnn{p - 1) + nln2n(j> - l)2/2! + ... + nlifn(p - l)m/m\. Substi­
tuting n = l/2 + e and (1 - n) = V 2 ~ e a nd expanding lnmn about '/2 gives 
(1A + 0" - O/2 + e) + [Gi + R1](P - D + [Qi + R2](P-W/V + - + [Qm 
+ RJ(P- i r / w ! and C/j-JV = (V 2 -O + [61-Ri](P-D + [Qi-Ri](P 
- 1)72! + ... + [Q„ - RJ(p - \)m/m\. Gi and R, (i = 1, m) represent the 
odd and even terms, respectively, in the expansion of nln'n about n = '/2. 
Substituting these expressions for ('/2 + ()p a"d O/2 - eY into eq 9 and 
collecting terms gives eq 10. Note that the bond order conservation condition 
(/I1 + /J2 = 1) plays an important role in the segregation of odd and even terms 
in the expansion. 

(35) G. W. Koepple and A. J. Kresge, J. Chem. Soc, Chem. Commun., 
371 (1973). 

(36) De = bond dissociation energy for A-C, £0 = Morse constant for A-C 
bond, Ar, = deviation of A-C bond length from the average of A-A and C-C 
bond lengths, ^1 = 0.26/S0- See ref 17 for more details. 

(37) An important contribution to the simplicity of the final result is the 
bond order conservation condition imposed on BEBO: A1 + n2 = 1. This leads 
to H1H2 = (V2 + OO/2 - 0 = '/4 _ «2- T h e expansion of ['/4 - «2]^' about 
e = 0 will contain only even terms in e. 

(38) The limiting case of eq 5 requires that J?AC = 1Z2(RAA + ^cc) when 
(1 - n') and n' for the cross reaction equals the corresponding quantities (H01* 
and n02', respectively) for the associated identity reactions. When /?AC is 
chosen by some other criteria, nonadditive contributions to the intrinsic barrier 
(AE0*) may be significant even when AE a* 0. Similar remarks apply to eq 
14 and 15. 

After expansion of the exponential terms and use39 of DAA = XA^A 
and DQC = Xc*c. it can be shown that RAC divides into a weighted 
sum of VA and Vc, where the weighting functions are even .n e.37 

The only effect of including the BEBO repulsion term is to modify 
the kinetic term of eq 10 without changing the general form. The 
fact that the .general form of the BEBO equation is unchanged 
by addition of the repulsion term accounts for at least part of the 
observation that BEBO without repulsion and BEBO with re­
pulsion often give similar results.17 

Zavitsas Equation for Atom Transfers. The Zavitsas equation 
and extensive applications have been described in detail else­
where.25 The equation is applicable to atom-transfer reactions 
and can be reduced to the form40 

AE* = 
AE0* + V2AE + [VABeAB* + KBC6BC

2] 

+ PBCXBC) + 2[KABeAB(l - «ABO*) ~ 

+ '/4^(«AB.«BC)(^ABXAB 

^BC«BC(1 - «BCO*)] (14) 

Since tj^ and eBC are related by explicit transcendental equations,41 

it can be shown that eq 14 is equivalent to an additive contribution 
(i.e., AE0* + 1I2AE) plus a nonadditive contribution consisting 
of a weighted sum of KAB and VBC (kinetic term) and a weighted 
difference of KAB and Vic (thermodynamic term). Consequently 
the Zavitsas equation is also a special case of eq 8.38 

The LEPS Equation. The LEPS equation has been used ex­
tensively for fitting various experimental or theoretical data to 
functions describing potential surfaces of atom-transfer reactions.16 

In the form obtained by Sato,16c the LEPS equation can be ex­
pressed as42 

A£* = l ^ A B + £ A B ' ) « A B 2 - ( £ A B - 5 A B ' ) " A B + 

y2(Z)BC + ABC')«BC2 - (£>BC - ASC')«BC + 1MDAC + 'BC . 

(«AB2a)(«BC2b) 
^ c O c 2 

[(a - 0)2 + (a - T ) 2 + 

, «AB «BC 
(£>AC - J>AC') 

<-0 
W-y)2V/2(]/2l'2) + DAB (15) 

(39) XA and Xc a r e proportionality constants relating D^ with KA and Dcc 
with VQ, respectively. 

(40) The Zavitsas equation (ref 25) can be written as Af* — ^ABI^AB* 
(nAB' - 2) + 1] + KBCIBBC'^BC' " 2)] + KAC[2nAB

,»BcVCo + 
"AB'^BC'VCO2! where nAB* - e-*AB(rAB,-'AB0), 0AB is a Morse constant, rAB* 
is the A-B bond length in the A-B-C transition state, rAB0 is the equilibrium 
A-B bond length, KAB, Vsc, and KAC are bond dissociation energies, and C0 
is a constant. By use of C0 = nABo'nBCO* (where «ABo* and nBco' are bond 
orders (ref 43 and 44) corresponding to A-B and B-C in the appropriate 
identity reaction transition states) and expansion of the expression for AE' 
about nAB' = nABo* ~ CAB and nBC' = nBC0 ' + eBo eq 14 is obtained. 

(41) Zavitsas uses an equibonding criterion (ref 25) to estimate the ge­
ometry and energy of the transition state. The exact quantities can be found 
by solving the equations dAE'/dnAB = 0 and dAE'/dnBC = 0 for nAB* and 
«BC'. As a result, «AB and eBC will be related so that each of them can be 
expressed as functions of common variables (bond dissociation energies, Morse 
parameters, etc.). 
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where DAB and DBC are bond dissociation energies of A-B and 
B-C, «AB and «BC are bond orders4344 of the A-B and B-C bonds 
at the transition state,45 and DAB, DBC' DAC, DAC', a, b, and C0 

are adjustable constants.46 The parameters a, 0, and 7 are given 
by 

« = 1A(DM " A u s ' W - (£>AB + A\B')«AB (16) 

0 = 1A(OBC - DBC')nBC
2 - (Ax: + D3C')nBC O 7 ) 

7 = 
>AB2 a)(*BC2 b) , „ ^ n ,>ABa)("BCb) 

fttf>AC " -DAC') —2 (^AC + DAC') 

(18) 

In the limiting case of «AB = 0 and nBC = 1, the LEPS equation 
reduces to 

AE* = -DBC + DAC = AE (19) 

which corresponds to one of the limiting cases of eq 4 (see eq 7). 
When «AB = 1 and nBC = 0, the LEPS equation simplifies to 

AE* = 0 (20) 

which corresponds to another limiting case of eq 4 (see eq 6). For 
a ~ 0 and (a - 0)2 « (a - -y)2 the LEPS equation reduces to 
the same thermoneutral limit as eq 1 (see eq 5).47 Consequently, 
the LEPS equation and eq 4 share three important limiting cases 
(viz., eq 5-7), and for small changes, in AE near AE = 0, both 
equations give identical results.38 

These conclusions are based on first-order expansion of the 
square root term in eq 15, and it is instructive to briefly consider 
the second-order term,48 which contains the factor (0 - a)2. From 
eq 16 and 17 it can be seen that (0 - a)2 will contain cross terms 
between DAB and D90 (i.e., DABDBC). When (0 - a)2 is expanded 
about «AB = nBC = 1Ii, the even and odd terms in eAB and eBc('/2 
+ e = n) can still be grouped together, as with BEBO and the 
Zavitsas equation but not all of the even and odd terms will be 
weighted by quantities related to properties associated with single 
bonds (e.g., KAB and fiBC, eq 10 and 14). Consequently, the LEPS 
equation does not correspond precisely to a special case of eq 4 
or eq 8, but all three equations exhibit similar behavior at and 
near49 the limiting cases (Le., eq 5-7). 

Discussion and Conclusions 
Elimination of Unnecessary Assumptions. The 14 empirical 

equations discussed in the present paper have been derived for 
the purpose of describing separate classes of group-transfer re­
actions, including electron transfer,1,20 atom transfer,14,16"19'23"25 

proton transfer,14,19,22"26 and nucleophilic substitution.14,19,23,24 Not 
surprisingly, the assumptions on which these treatments are 
founded vary extensively. A significant contribution of the present 
work has been to demonstrate that all of these various treatments 
can be obtained from a common starting point (e.g., eq 4 or eq 
8),4,5 which is not limited to any particular class of group-transfer 
reactions. 

(42) The form of this equation is that given by Sato except that the co­
ordinates are expressed in terms of bond order rather than Cartesian distances 
(see ref 43 and 44). 

(43) L. Pauling, J. Am. Chem. Soc, 69, 542 (1947). 
(44) The Morse function [£>efr

lS("»)(<r''<"0) - 2)] can be transformed from 
a distance variable (i.e., ^r 0 ) to a bond order variable (i.e., n) by making the 
substitution n = «-«"<>>. The Morse function is quadratic in bond order 
[Dt-n(n - 2)], and this property is useful in solving the Schrodinger equation 
for a Morse oscillator. Similar remarks apply to the anti-Morse function (see 
ref 16c). 

(45) The parameters «AB and nBC in eq 15 represent values satisfying 
criteria for a stationary point (i.e., d&E'/dnAB = 0 and 3A£'/dnsc = 0). 

(46) For examples, see: (a) J. C. Polanyi and J. L. Schreiber, Chem. Phys. 
Lett., 29, 319 (1974). (b) A. F. Wagner, G. C. Schatz, and J. M. Bowman, 
J. Chem. Phys., 74, 4960 (1981). 

(47) The term [(a - 0)2 + (a- T ) 2 + (/3 - 7)2]1/2(l/21/2) is equivalent 
to [(a - y)2 + (0 - a)(a - 7) + (/3 - a)2]['2. Setting « = (/8 - a)(a - 7) + 
(0 - a)2 and expanding about (a - y)2 to first order, [(a - JS)2 + (a - y)2 + 
(0-7)2]1 / 2(l/21 / 2) = ~/2a + 72/3-7- Substituting this expression in eq 15 
for the two identity reactions and the cross reaction gives eq 5. 

(48) VBW " <*)V(« - T)-
(49) For a,y — 0, [(a - P)2 + (a- y)2 + (/3 - y)2] '/2(l/2'/2) a* 0 - >/2(a 

+ 7). Substituting this equation into eq 15 yields eq 19 as a,y -» 0. 

This is an important result, since many of these equations give 
reasonable results in spite of the fact that their underlying as­
sumptions are often inappropriate. A good example is the Marcus 
equation, which was orginally derived for electron-transfer re­
actions by assuming zero or weak overlap between the orbitals 
of the two reacting species in the transition state. The successful 
application of this equation to situations where the weak overlap 
approximation is clearly inapplicable (e.g., gas-phase proton 
transfers,4,5 SN2 substitutions,2,4"6 and well depths of gas-phase 
proton-bound dimers4,5) demonstrates that the assumptions suitable 
for certain electron-transfer reactions are sufficient but not 
necessary. Marcus used the weak overlap approximation to derive 
a "wave-function additivity" condition, and in three recent pa­
pers,4,5,29 it has been shown that this condition may still hold even 
when interactions between the reacting groups are substantial and 
changes in electronic structure have taken place. This example 
illustrates the important point that the assumptions supporting 
an empirical treatment may be of little consequence with regard 
to its usefulness in describing experimental results and the 
mathematical form following from the assumptions is far more 
significant. 

Unusual Reactivity Patterns: Importance of Intrinsic Barriers 
and Kinetic Components. It has been widely recognized that 
reactions with comparable thermodynamics may exhibit sub­
stantial differences in their activation barriers.50 Dispersion in 
rate-equilibrium correlations of proton-transfer reactions,51 the 
enhanced nucleophilicities (in terms of reaction rate constants) 
of second-row nucleophiles compared to first-row analogues,51 and 
the greater nucleophilicity often observed with nucleophiles 
containing lone pair(s) on the atom adjacent to the nucleophilic 
center (the a effect)51 provide some simple examples. For two 
reactions with different barriers and comparable thermodynamics, 
eq 4, 5, and 8 suggest that the barrier difference can be understood 
in terms of the corresponding identity barriers: the reaction with 
the lowest barrier should also correspond to the reaction with the 
lowest intrinsic barrier.52 For reactions with different thermo­
dynamics, eq 4, 5, and 8 allow a prediction of the relative con­
tribution of the kinetic and thermodynamic components to the 
overall barrier. 

Orbital symmetry constraints are one factor that should affect 
the intrinsic barrier (AE0*) and the kinetic term [i.e., A£0*(l -
g2)]- Examples of group-transfer reactions subject to orbital 
symmetry constraints include sigmatropic rearrangements.53 The 

- ^ C H 2 H 2 C - ^ 

H H 

CH2 I 

I H 

H 

barriers to [1,5] shifts are generally lower than barriers to [1,3] 
shifts,53 and these differences should appear as lower "intrinsic" 
barriers for the thermally allowed reactions (i.e., [1,5] shifts). 

Catalysis is another fertile area for extending the idea of kinetic 
and thermodynamic contributions to reaction barriers. Catalysts 
are often described as agents that lower the energy of the transition 
state relative to reactants without altering the relative energy of 
reactants and products.54 For a single-step group-transfer re­
action, a catalyst could operate only by lowering the "intrinsic" 
barrier of the reaction.55 

(50) For leading references, see ref 4. 
(51) Jerry March, "Advanced Organic Chemistry", McGraw-Hill, New 

York, 1977. 
(52) For two unsymmetrical reactions (barriers given by AEAC* and 

A£DE') there will be four identity reactions (barriers given by AE^*, AEQC*< 
A£DD*, A_EEE*). If the thermodynamics of reactions AC and DE are com­
parable, then the smaller barrier (A£AC* vs. A£DE') will correspond to the 
lower average identity barrier ['/2(A£AA' + &Ecc') vs. 72(A£DD' + A£EE')1-

(53) R. B. Woodward and R. Hoffmann, "The Conservation of Orbital 
Symmetry", Academic Press, New York, 1970. 

(54) L. Pauling, Am. Sci., 30, 51 (1948). 
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The present paper and previous work4'5 have elaborated on the 
idea of kinetic and thermodynamic contributions to barriers of 
group-transfer reactions. The kinetic contribution [AE0* (I - g2)] 
is related to the intrinsic barrier and depends upon the barriers 
of two identity reactions,1 while the thermodynamic contribution 
[]/2&E(\ + gi)] derives from A£ for the overall reaction. Both 
quantities can be obtained experimentally2,5'31" or computed 
quantum mechanically.4'6 Equations 4 and 8 are compact ways 
of representing and predicting experimental data: n identity 
reactions provide sufficient information to calculate "intrinsic" 
barriers' for «(« - l ) /2 unsymmetrical group-transfer reactions. 
It should be noted that for other classes of reactions (e.g., carbonyl 
additions, cycloadditions, fragmentations, electrocyclic reactions), 
the separation of barriers into kinetic and thermodynamic con­
tributions is still useful, although the quantitative formalism is 
somewhat different.56 

(55) For multistep reactions, other factors may be important. For dis­
cussion, see: (a) J. R. Murdoch and D. E. Magnoli, J. Am. Chem. Soc, 104, 
2782 (1982). (b) W. P. Jencks, Chem. Rev., 72, 705 (1972). 

Conjugated benzenoid polycyclic hydrocarbons undergo a 2-fold 
reduction process.2 Scrutinized magnetic resonance studies, to 
be described below, performed on the resulting dianions reveal 
some hitherto unencountered phenomena that concern funda­
mental properties of antiaromatic charged systems. These phe­
nomena point toward the existence of an equilibrium between the 
singlet ground state of the doubly charged benzenoid polycycles 
and a low-lying, thermally accessible excited triplet state. The 
equilibrium is found to have a substantial influence on the spectral 
patterns of these systems. 

HMO considerations differentiate between two classes of {An 
+ 2) ^-conjugated polycyclic species: systems endowed with C3 

or higher axial symmetry for which the highest occupied and lowest 
unoccupied orbitals appear in pairs vs. systems with lower axial 

(1) (a) The Hebrew University of Jerusalem, (b) The Weizmann Institute 
of Science, Rehovot. 

(2) (a) Streitwieser, A.; Suzuki, S. Tetrahedron 1961, 16, 153-168. (b) 
Cox, R. H.; Terry, H. W.; Harrison, L. W. Tetrahedron Lett. 1971, 50, 
4815-4817. (c) For general review, see: Bates, R. B. In "Comprehensive 
Carbanion Chemistry"; Elsevier: New York, 1980; Part A, pp 1-54, and 
references cited therein. 
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(56) J. R. Murdoch, J. Am. Chem. Soc, in press. The intrinsic barrier 
for any one-step reaction can be estimated from the Marcus equation by 
averaging the arithmetic and geometric means of the barriers in the forward 
and reverse directions. As the reaction approaches thermoneutrality, the 
arithmetic and geometric means converge and the intrinsic barrier is given 
by the average of the barriers for the forward and reverse directions. The 
intrinsic barrier from the Rehm-Weller equation corresponds to the geometric 
mean of forward and reverse barriers. 

symmetry in which no such orbital degeneracies exist.3 The 
difference between the two classes becomes crucial when the 
polycycles are reduced to the corresponding {An) ir dianions. In 
the first group the two additional electrons populate two different 
degenerate orbitals, which may lead to a triplet ground state. This 
is the case in systems such as the triphenylene dianion (I),4 

1,3,5-triphenylbenzene dianion (2),5 and under strong solvating 
conditions the coronene dianion system (3).6 It should be noted 
that dianions of C3 or a higher symmetry do not adopt by necessity 
a triplet ground state. Calculations have shown that configuration 

(3) (a) Wert, J. E.; Bolton, J. R. "ESR Elementary Theory and Practical 
Applications"; McGraw-Hill: New York, 1972; pp 232-246. (b) Breslow, 
R. Pure Appl. Chem. 1982, 54, 927-938. 

(4) (a) Willigen, H. v.; Broekhoven, J. A. M.; Boer, E. MoI Phys. 1967, 
12, 533-548. (b) Sommerdijk, J. L.; Boer, E. J. Chem. Phys. 1969, 50, 
4771-4774. 

(5) (a) Jesse, R. E.; Biloen, P.; Prins, R.; Voorst, J. D. W.; Hoijtink, G. 
J. MoI. Phys. 1963, 6, 633-635. (b) Broekhoven, J. A. M.; Sommerdijk, J. 
L.; Boer, E. Ibid. 1971, 20, 993-1003. 

(6) (a) Glasbeek, M.; Voorst, J. D. W.; Hoijtink, G. J. /. Chem. Phys. 
1966, 45, 1852. (b) Glasbeek, M.; Visser, A. J. W.; Maas, G. A.; Voorst, J. 
D. W.; Hoijtink, G. J. Chem. Phys. Lett. 1958, 2, 312-314. 

Paramagnetism and Antiaromaticity: Singlet-Triplet 
Equilibrium in Doubly Charged Benzenoid Polycyclic 
Systems 
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Abstract: Fused benzenoid systems such as anthracene, phenanthrene, 3,4-benzophenanthrene, and chrysene were reduced 
with lithium, sodium, and potassium in various solvents to the antiaromatic doubly charged species. The NMR and ESR 
patterns of the dianions revealed a strong dependence on the countercation, solvent, and temperature. This dependence is 
interpreted by the existence of an equilibrium process between the singlet ground state and a thermally accessible excited triplet 
state of the antiaromatic dianions. The direction and extent of the equilibrium is determined by the energy gaps between 
the LUMO and HOMO of these charged species, which depends, in turn, on the topology of the hydrocarbon and on the solvation 
properties of the obtained salt. 
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